153 research outputs found

    Differential insular cortex sub-regional atrophy in neurodegenerative diseases: a systematic review and meta-analysis

    Get PDF
    The insular cortex is proposed to function as a central brain hub characterized by wide-spread connections and diverse functional roles. As a result, its centrality in the brain confers high metabolic demands predisposing it to dysfunction in disease. However, the functional profile and vulnerability to degeneration varies across the insular sub-regions. The aim of this systematic review and meta-analysis is to summarize and quantitatively analyze the relationship between insular cortex sub-regional atrophy, studied by voxel based morphometry, with cognitive and neuropsychiatric deficits in frontotemporal dementia (FTD), Alzheimer’s disease (AD), Parkinson’s disease (PD), and dementia with Lewy bodies (DLB). We systematically searched through Pubmed and Embase and identified 519 studies that fit our criteria. A total of 41 studies (n = 2261 subjects) fulfilled the inclusion criteria for the meta-analysis. The peak insular coordinates were pooled and analyzed using Anatomic Likelihood Estimation. Our results showed greater left anterior insular cortex atrophy in FTD whereas the right anterior dorsal insular cortex showed larger clusters of atrophy in AD and PD/DLB. Yet contrast analyses did not reveal significant differences between disease groups. Functional analysis showed t

    rTMS affects working memory performance, brain activation and functional connectivity in patients with multiple sclerosis.

    Get PDF
    OBJECTIVE: To investigate the effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) of the right dorsolateral prefrontal cortex (DLPFC) on working memory performance, while measuring task-related brain activation and task-related brain connectivity in patients with multiple sclerosis (MS). METHODS: 17 patients with MS and 11 healthy controls (HCs) underwent 3 experimental sessions (baseline, real-rTMS, sham-rTMS), all including an N-back task (3 task loads: N1, N2, N3; control condition: N0) inside the MR scanner. Prior to imaging, real-rTMS (10 Hz) was applied to the right DLPFC. The stimulation site was defined based on individually assessed N-back task activation at baseline and located using neuronavigation. Changes in whole brain functional activation and functional connectivity with the right DLPFC were calculated. RESULTS: N-back task accuracy (N2 and N3) improved after real-rTMS (and not after sham-rTMS) compared with baseline (p=0.029 and p=0.015, respectively), only in patients. At baseline, patients with MS, compared with HCs, showed higher task-related frontal activation (left DLPFC, N2>N0), which disappeared after real-rTMS. Task-related (N1>N0) functional connectivity between the right DLPFC and the right caudate nucleus and bilateral (para)cingulate gyrus increased in patients after real-rTMS when compared with sham stimulation. CONCLUSIONS: In patients with MS, N-back accuracy improved while frontal hyperactivation (seen at baseline relative to HCs) disappeared after real-rTMS. Together with the changes in functional connectivity after real-rTMS in patients, these findings may represent an rTMS-induced change in network efficiency in patients with MS, shifting patients' brain function towards the healthy situation. This implicates a potentially relevant role for rTMS in cognitive rehabilitation in MS

    Exploring resting state connectivity in patients with psychotic depression

    Get PDF
    BACKGROUND: Severe depression is associated with high morbidity and mortality. Neural network dysfunction may contribute to disease mechanisms underlying different clinical subtypes. Here, we apply resting-state functional magnetic resonance imaging based measures of brain connectivity to investigate network dysfunction in severely depressed in-patients with and without psychotic symptoms. METHODS: A cohort study was performed at two sites. Older patients with major depressive disorder with or without psychotic symptoms were included (n = 23 at site one, n = 26 at site two). Resting state 3-Tesla functional MRI scans, with eyes closed, were obtained and Montgomery-Åsberg Depression Rating Scales were completed. We denoised data and calculated resting state networks in the two groups separately. We selected five networks of interest (1. bilateral frontoparietal, 2.left lateralized frontoparietal, 3.right lateralized frontoparietal, 4.default mode network (DMN) and 5.bilateral basal ganglia and insula network) and performed regression analyses with severity of depression, as well as presence or absence of psychotic symptoms. RESULTS: The functional connectivity (FC) patterns did not correlate with severity of depression. Depressed patients with psychotic symptoms (n = 14, 61%) compared with patients without psychotic symptoms (n = 9, 39%) from site one showed significantly decreased FC in the right part of the bilateral frontoparietal network (p = 0.002). This result was not replicated when comparing patients with (n = 9, 35%) and without (n = 17, 65%) psychotic symptoms from site two. CONCLUSION: Psychotic depression may be associated with decreased FC of the frontoparietal network, which is involved in cognitive control processes, such as attention and emotion regulation. These findings suggest that FC in the frontoparietal network may be related to the subtype of depression, i.e. presence of psychotic symptoms, rather than severity of depression. Since the findings could not be replicated in the 2nd sample, replication is needed before drawing definite conclusions

    Connectivity-based parcellation of the thalamus explains specific cognitive and behavioural symptoms in patients with bilateral thalamic infarct

    Get PDF
    A novel approach based on diffusion tractography was used here to characterise the cortico-thalamic connectivity in two patients, both presenting with an isolated bilateral infarct in the thalamus, but exhibiting partially different cognitive and behavioural profiles. Both patients (G.P. and R.F.) had a pervasive deficit in episodic memory, but only one of them (R.F.) suffered also from a dysexecutive syndrome. Both patients had an MRI scan at 3T, including a T1-weighted volume. Their lesions were manually segmented. T1-volumes were normalised to standard space, and the same transformations were applied to the lesion masks. Nineteen healthy controls underwent a diffusion-tensor imaging (DTI) scan. Their DTI data were normalised to standard space and averaged. An atlas of Brodmann areas was used to parcellate the prefrontal cortex. Probabilistic tractography was used to assess the probability of connection between each voxel of the thalamus and a set of prefrontal areas. The resulting map of corticothalamic connections was superimposed onto the patients' lesion masks, to assess whether the location of the thalamic lesions in R.F. (but not in G. P.) implied connections with prefrontal areas involved in dysexecutive syndromes. In G.P., the lesion fell within areas of the thalamus poorly connected with prefrontal areas, showing only a modest probability of connection with the anterior cingulate cortex (ACC). Conversely, R.F.'s lesion fell within thalamic areas extensively connected with the ACC bilaterally, with the right dorsolateral prefrontal cortex, and with the left supplementary motor area. Despite a similar, bilateral involvement of the thalamus, the use of connectivity-based segmentation clarified that R.F.'s lesions only were located within nuclei highly connected with the prefrontal cortical areas, thus explaining the patient's frontal syndrome. This study confirms that DTI tractography is a useful tool to examine in vivo the effect of focal lesions on interconnectivity brain patterns

    Increased Sleep Fragmentation Leads to Impaired Off-Line Consolidation of Motor Memories in Humans

    Get PDF
    A growing literature supports a role for sleep after training in long-term memory consolidation and enhancement. Consequently, interrupted sleep should result in cognitive deficits. Recent evidence from an animal study indeed showed that optimal memory consolidation during sleep requires a certain amount of uninterrupted sleep

    Memory for Semantically Related and Unrelated Declarative Information: The Benefit of Sleep, the Cost of Wake

    Get PDF
    Numerous studies have examined sleep's influence on a range of hippocampus-dependent declarative memory tasks, from text learning to spatial navigation. In this study, we examined the impact of sleep, wake, and time-of-day influences on the processing of declarative information with strong semantic links (semantically related word pairs) and information requiring the formation of novel associations (unrelated word pairs). Participants encoded a set of related or unrelated word pairs at either 9am or 9pm, and were then tested after an interval of 30 min, 12 hr, or 24 hr. The time of day at which subjects were trained had no effect on training performance or initial memory of either word pair type. At 12 hr retest, memory overall was superior following a night of sleep compared to a day of wakefulness. However, this performance difference was a result of a pronounced deterioration in memory for unrelated word pairs across wake; there was no sleep-wake difference for related word pairs. At 24 hr retest, with all subjects having received both a full night of sleep and a full day of wakefulness, we found that memory was superior when sleep occurred shortly after learning rather than following a full day of wakefulness. Lastly, we present evidence that the rate of deterioration across wakefulness was significantly diminished when a night of sleep preceded the wake period compared to when no sleep preceded wake, suggesting that sleep served to stabilize the memories against the deleterious effects of subsequent wakefulness. Overall, our results demonstrate that 1) the impact of 12 hr of waking interference on memory retention is strongly determined by word-pair type, 2) sleep is most beneficial to memory 24 hr later if it occurs shortly after learning, and 3) sleep does in fact stabilize declarative memories, diminishing the negative impact of subsequent wakefulness

    Hydration level is an internal variable for computing motivation to obtain water rewards in monkeys

    Get PDF
    In the process of motivation to engage in a behavior, valuation of the expected outcome is comprised of not only external variables (i.e., incentives) but also internal variables (i.e., drive). However, the exact neural mechanism that integrates these variables for the computation of motivational value remains unclear. Besides, the signal of physiological needs, which serves as the primary internal variable for this computation, remains to be identified. Concerning fluid rewards, the osmolality level, one of the physiological indices for the level of thirst, may be an internal variable for valuation, since an increase in the osmolality level induces drinking behavior. Here, to examine the relationship between osmolality and the motivational value of a water reward, we repeatedly measured the blood osmolality level, while 2 monkeys continuously performed an instrumental task until they spontaneously stopped. We found that, as the total amount of water earned increased, the osmolality level progressively decreased (i.e., the hydration level increased) in an individual-dependent manner. There was a significant negative correlation between the error rate of the task (the proportion of trials with low motivation) and the osmolality level. We also found that the increase in the error rate with reward accumulation can be well explained by a formula describing the changes in the osmolality level. These results provide a biologically supported computational formula for the motivational value of a water reward that depends on the hydration level, enabling us to identify the neural mechanism that integrates internal and external variables
    corecore